Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Build Environ ; 202: 108049, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1272324

ABSTRACT

During the COVID-19 pandemic, exposure to particles exhaled by infected passengers in commercial aircraft cabins has been a great concern. Currently, aircraft cabins adopt mixing ventilation. However, complete mixing may not be achieved, and thus the particle concentration in the respiratory zone may vary from seat to seat in a cabin. To evaluate the particle exposure in a typical single-aisle aircraft cabin, this investigation constructed an aircraft cabin mockup for experimental tests. Particles were released from a single source or dual sources at different seats to represent particles exhaled by infected passengers. The particle concentrations in the respiratory zones at various seats were measured and compared. The particle exposure was evaluated in both a cross section and a longitudinal section. Leaving the middle seat vacant to reduce particle exposure was also addressed. In addition, the velocity fields and air temperatures were measured to provide a better understanding of particle transport. It was found that the particle exposure at the window seat is always the lowest, regardless of the particle release locations. If the passenger seated in the middle does not release particles, his/her presence enhances the particle dispersion and thereby reduces the particle exposure for adjacent passengers. In the cabin mockup, the released particles can be transported across at least four rows of seats in the longitudinal direction.

2.
J Med Chem ; 65(4): 2794-2808, 2022 02 24.
Article in English | MEDLINE | ID: covidwho-1192017

ABSTRACT

A novel series of peptidomimetic aldehydes was designed and synthesized to target 3C protease (3Cpro) of enterovirus 71 (EV71). Most of the compounds exhibited high antiviral activity, and among them, compound 18p demonstrated potent enzyme inhibitory activity and broad-spectrum antiviral activity on a panel of enteroviruses and rhinoviruses. The crystal structure of EV71 3Cpro in complex with 18p determined at a resolution of 1.2 Å revealed that 18p covalently linked to the catalytic Cys147 with an aldehyde group. In addition, these compounds also exhibited good inhibitory activity against the 3CLpro and the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially compound 18p (IC50 = 0.034 µM, EC50 = 0.29 µM). According to our previous work, these compounds have no reasons for concern regarding acute toxicity. Compared with AG7088, compound 18p also exhibited good pharmacokinetic properties and more potent anticoronavirus activity, making it an excellent lead for further development.


Subject(s)
Aldehydes/pharmacology , Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Enterovirus/drug effects , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Aldehydes/chemical synthesis , Aldehydes/chemistry , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line , Chlorocebus aethiops , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/isolation & purification , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Drug Design , Humans , Male , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL